EEC404

- (a) A second order system is shown in figure 3. Determine its:
 - (i) Critical resistance R_{cr} and Damping ratio
 - (ii) Undamped natural frequency w
 - (iii) Impulse Response h(t)
 - (iv) Transfer function.

Figure 3

(b) In the circuit of Figure 4 the switch k is suddenly closed at t = 0. The capacitor was initially uncharged and there was no current flowing through the inductance at t = 0. Determine the current $i_1(t)$ for t > 0.

(c) Using block diagram reduction techniques, simplify the block diagram of a system given in figure 5 and find the overall transfer function:

Figure 5

Printed Pages-4

B.Tech.

(SEM. IV) THEORY EXAMINATION 2011-12 SIGNALS AND SYSTEMS

Time: 3 Hours

Total Marks : 100

Note: -- Attempt all questions. All questions carry equal marks.

- Attempt any four parts of the following: $(5\times4=20)$
 - (a) Determine whether the following signal is periodic. If periodic determine the fundamental period:

$$x(t) = 2\sin\left(\frac{2}{3}\right)t + 3\cos\left(\frac{2\pi}{5}\right)t$$

- (b) For the signal x(t) shown in Figure 1, draw the signals:
 - (i) x(t+2)
 - (ii) x(t-2)
 - (iii) x(2t+3)
 - (iv) $x\left(\frac{3}{2}t\right)$
 - (v) x(-t+1)

- (c) Determine and sketch the even and odd components of the continuous time signal $x(t) = 10 e^{-2t} u(t)$.
- (d) Determine whether the discrete time signal x(n) = u(n) u(n-4) is an energy signal or a power signal.

- (e) Define deterministic, random, odd, even and periodic signals with the help of examples.
- (f) Write down the expression for and plot the sinusoidal discrete-time sequence whose peak amplitude is 10 and frequency is 100 Hz. The sampling frequency is 1000 samples per second.
- 2. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Find the Laplace Transform of the signal $x(t) = e^{-3t} u(t) + e^{-2t} u(t)$ and find ROC.
 - (b) Find the inverse Laplace Transform of

$$x(s) = \frac{3s^2 + 8s + 6}{(s+2)(s^2 + 2s + 1)}.$$

(c) Using Laplace Transform method, solve the following differential equation for the given initial conditions:

$$\frac{d^2 x(t)}{dt^2} + 5 \frac{d x(t)}{dt} + 6 x(t) = 8(t) + 6 u(t) \text{ with } x(0) = 1,$$
and $x'(0) = 2$.

- (d) Find the unilateral z-Transform of $x(n) = [a^n \cos \omega_n n] u(n)$.
- (e) Using long division method, determine the inverse z-

Transform of
$$x(z) = \frac{1+2z^{-1}}{1-2z^{-1}+z^{-2}}$$

If x(n) is causal.

- (f) Solve the differential equation using z-Transform method x(n-2)-9x(n-1)+18 x(n)=0. Initial conditions are x(-1)=1, x(-2)=9.
- 3. Attempt any two parts of the following: $(10\times2=20)$
 - (a) (i) Find and plot the magnitude and phase spectra of the signal $x(t) = A e^{-t/t} u(t)$.
 - (ii) Find the Fourier transform of signal $x(t) = \cos(\omega_0 t)$.

- (b) If the signal x(t) = A e^{-t/T} u(t) considered is given as input to an ideal low pass filter whose cut-off frequency is
 - fe = $\frac{1}{2\pi T}$. What percentage of the energy of x(t) will be available at the output of the filter?
- (c) If $x(n) = a^{|n|}$; 0 < a < 1, find the DTFT of x(n) and plot its magnitude spectrum.
- 4. Attempt any two parts of the following: $(10\times2=20)$
 - (a) (i) A discrete-time system is described by the following input-output relation y(n) = n^{x(n)}.
 - Is this system (A) static or dynamic? (B) linear or non-linear? (C) time-varying or time-invariant? Give justification for your answer.
 - (ii) Check whether the following systems are causal or not:

(A)
$$y(t) = x^2(t) + x(t-2)$$

(B)
$$y(t) = x(t-2) + x(2-t)$$

(b) If x(t) and y(t) are shown in Figure 2(a) and (b) determine graphically, the signal z(t) = x(t) + y(t)

(c) Find the auto-correlation function and the energy spectral density of the signal $x(t) = e^{-t} u(t)$.